Bdellovibrio are small (0.25×1.0 µm), flagellate, motile, Gram-negative deltaproteobacteria which invade and kill other Gram-negative bacteria, entering the prey cell’s periplasm, replicating within it and using the contents of that bacterium as their nutrient source. *Bdellovibrio bacteriovorus* HD100 is the sequenced strain and has a 3.8 Mb genome, indicating that although *Bdellovibrio* have evolved to invade and ‘eat’ other bacteria, they have not lost large numbers of genes, as is the case with truly parasitic bacteria which rely on their hosts. The interaction between *Bdellovibrio* and other bacteria can be thought of as predatory rather than parasitic as, in most cases, the *Bdellovibrio* kill the prey cell within 15 minutes of entry and do not establish a long-lived parasitic relationship within it.

In keeping with its large genome, *B. bacteriovorus* can exist in two different growth phases, as host-dependent (HD) cells that require prey for growth and division, and as host-independent (HI) cells, when growing in rich nutrient media as might be found in biofilms and sediments in nature. The balance between HD and HI growth in natural environments is not known, but HI growth is a useful tool for saving non-predatory mutants for study in the lab setting. Predatory growth seems to be a kind of evolutionary trade-off in periplasmic growth phase, during which they reside inside the dead prey cell, degrading it by secreting enzymes across the prey cytoplasmic membrane to digest prey macromolecules, and taking up the products for *Bdellovibrio* growth. *Bdellovibrio* seem to be mostly locked on to predatory growth in dilute environments and cannot productively switch to HI growth to survive, but depend on finding prey for replication. During the free-swimming attack phase, rapid prey location, attachment and recognition are vital to the successful replication of the *Bdellovibrio*, as they typically have a half-life of about 10 hours during starvation in buffered environments. A large complement of genes for flagellar and chemotaxis systems is seen in the genome to aid movement towards prey-rich regions.

Predatory growth

When growing predatorily, *Bdellovibrio* exhibit a biphasic lifestyle with a free-swimming attack phase and a sessile intra-periplasmic growth phase, during which they reside inside the dead prey cell, degrading it by secreting enzymes across the prey cytoplasmic membrane to digest prey macromolecules, and taking up the products for *Bdellovibrio* growth. *Bdellovibrio* seem to be mostly locked on to predatory growth in dilute environments and cannot productively switch to HI growth to survive, but depend on finding prey for replication. During the free-swimming attack phase, rapid prey location, attachment and recognition are vital to the successful replication of the *Bdellovibrio*, as they typically have a half-life of about 10 hours during starvation in buffered environments. A large complement of genes for flagellar and chemotaxis systems is seen in the genome to aid movement towards prey-rich regions.

An inside job:

Bdellovibrio

Some predatory ‘bugs’ eat other ‘bugs’ from inside, as Liz Sockett and her research group have found.

Bdellovibrio

False-coloured, negatively stained electron micrograph of a *B. bacteriovorus* bdelloplast. David Milner and Laura Hobley

Liz Sockett

An inside job: *Bdellovibrio* bacteriovorus

Some predatory ‘bugs’ eat other ‘bugs’ from inside, as Liz Sockett and her research group have found.
Bdellovibrio attach to many kinds of surfaces irreversibly, including inorganic particles and Gram-positive cells (which are not prey as they do not have a periplasm). How they tell prey from ‘junk’ is unknown. There seems to be a brief recognition period, during which the Bdellovibrio cell identifies its prey. Attachment and/or penetration is often mediated by pili. Once inside, the Bdellovibrio cell elongates, and then septates at multiple fission sites. The multiple progeny cells become flagellate, before releasing a final wave of lytic burst from the confines of the bdelloplast and killing the prey. How they seek out more prey is unknown. There seems to be a brief recognition period, during which the Bdellovibrio cell identifies its prey, attachment between cell and the formation of a structure called a bdelloplast. Where are Bdellovibrio found? Bdellovibrio are found throughout nature; wherever there are suitable prey to be eaten, Bdellovibrio are usually found eating them. Soil and fresh water samples are often found to contain Bdellovibrio, or its closely related cousins Bacteriovorax and Pseudobacterium. Saltwater samples often yield Bacteriovorax spp., another closely related cousin. Bdellovibrio have also been isolated from sewage, and from the gut flora of humans, horses and chickens. Bdellovibrio 16S rDNA sequences have been found in a variety of metagenomic studies, including those from marine sediments and even human skin. Bdellovibrio are found strongly associated with natural biofilms, and recent studies have shown that effective predation occurs in these naturally occurring bacterial communities.

Living antibiotics! In July 2008, the Health Protection Agency published further worrying statistics about the rise of antibiotic-resistant Gram-negative infections in the UK, charting the levels of resistance particularly in pathogenic Escherichia coli species. Bdellovibrio naturally attack and kill a wide range of Gram-negative bacteria, including Salmonella, E. coli, Proteus, Pseudomonas, Bordetella, Serratia and others. If applied as ‘living antibiotics’, Bdellovibrio would avoid many of the shortcomings of phage therapy which utilizes bacteriophage as a treatment against bacterial infection. Bdellovibrio are not known to be prey-specific; they infect a variety of Gram-negative hosts, and have no known specific host recognition site. In contrast, bacteriophage attach to specific molecular targets, hence are only effective against a narrow range of bacteria, which can in turn become resistant by simple point mutations in genes encoding these protein targets. In addition, some phage are unable to invade cells with capsules, whereas bacterial capsules have been shown to be an ineffective barrier to predation by Bdellovibrio. Bdellovibrio have been shown to be unable to enter and infect mammalian cells, which is of great importance when considering their potential as an antibiotic treatment. This means that they could infect and kill the pathogenic bacteria causing the infection whilst not causing harm to a patient. The potential applications of Bdellovibrio offer an exciting avenue for further research, and may one day form part of a new generation of antimicrobial therapeutics. In the future you may visit a doctor and be prescribed ‘Bdellovibrio therapy’ to combat your infection!

Liz Sockett, Laura Hobley, Andrew Fenton, Richard Woods, Carey Lambert, Chien-Yi Chang, Robert Atterbury, Rob Till, Marilyn Whitworth, Alike Capeness, Rowena Fung, Rashidah Ahmad, David Miller, Tom Lerner & Simon King Institute of Genetics, University of Nottingham, School of Biology, Medical School, QMC, Derby Road, Nottingham NG7 2UH, UK (Tel: 44 115 8230325; e: liz.sockett@nottingham.ac.uk)

Further reading